首页> 外文OA文献 >Application of Adjoint Monte Carlo to Accelerate Simulations of Mono-directional Beams in Treatment Planning for Boron Neutron Capture Therapy
【2h】

Application of Adjoint Monte Carlo to Accelerate Simulations of Mono-directional Beams in Treatment Planning for Boron Neutron Capture Therapy

机译:伴随蒙特卡洛法在硼中子俘获治疗方案设计中单向波束加速模拟中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simulations the particles start at a source and lose energy as they travel towards the region of interest, i.e. the designated point of detection. Conversely, with adjoint Monte Carlo simulations, the so-called adjoint particles start at the region of interest and gain energy as they travel towards the source where they are detected. In this respect, the particles travel backwards and the real source and real detector become the adjoint detector and adjoint source, respectively. At the adjoint detector, an adjoint function is obtained with which numerically the same result, e.g. dose or flux in the tumor, can be derived as with forward Monte Carlo. In many cases, the adjoint method is more efficient and by that is much quicker when, for example, the response in the tumor or organ at risk for many locations and orientations of the treatment beam around the patient is required. However, a problem occurs when the treatment beam is mono-directional as the probability of detecting adjoint Monte Carlo particles traversing the beam exit (detector plane in adjoint mode) in the negative direction of the incident beam is zero. This problem is addressed here and solved first with the use of next event estimators and second with the application of a Legendre expansion technique of the angular adjoint function. In the first approach, adjoint particles are tracked deterministically through a tube to a (adjoint) point detector far away from the geometric model. The adjoint particles will traverse the disk shaped entrance of this tube (the beam exit in the actual geometry) perpendicularly. This method is slow whenever many events are involved that are not contributing to the point detector, e.g. neutrons in a scattering medium. In the second approach, adjoint particles that traverse an adjoint shaped detector plane are used to estimate the Legendre coefficients for expansion of the angular adjoint function. This provides an estimate of the adjoint function for the direction normal to the detector plane. In a realistic head model, as described in this paper, which is surrounded by 1020 mono-directional neutron/gamma beams and from which the best ones are to be selected, the example calculates the neutron and gamma fluxes in 10 tumors and 10 organs at risk. For small diameter beams (5 cm), and with comparable relative errors, forward Monte Carlo is seen to be 1.5 times faster than the adjoint Monte Carlo techniques. For larger diameter neutron beams (10 cm and 15 cm), the Legendre technique is found to be 6 and 20 times faster, respectively. In the case of gammas alone, for the 10 cm and 15 cm diameter beams, both adjoint Monte Carlo Legendre and point detector techniques are respectively 2 and 3 times faster than forward Monte Carlo.
机译:本文讨论了伴随运输理论的应用,以优化基于蒙特卡洛的放射治疗方案。该技术应用于硼中子俘获疗法,其中最经常涉及中子和伽马射线的混合束。在正常的前向蒙特卡洛模拟中,粒子从一个源开始,并在它们朝着感兴趣的区域(即指定的检测点)行进时损失能量。相反,在伴随蒙特卡洛模拟中,所谓的伴随粒子从感兴趣的区域开始,并在它们朝着被检测到的源行进时获得能量。在这方面,粒子向后移动,真实源和真实检测器分别变为伴随检测器和伴随源。在伴随检测器上,获得伴随函数,其伴随函数在数值上相同,例如,剂量或肿瘤中的通量,可以与前向蒙特卡洛法相同。在许多情况下,伴随方法更有效,并且例如在需要对患者周围的治疗束的许多位置和方向有风险的肿瘤或器官中的响应时,伴随方法会更快。但是,当治疗光束为单向光束时会出现问题,因为检测到沿入射光束的负方向横穿光束出口(处于邻接模式的探测器平面)的伴随的蒙特卡洛粒子的概率为零。此问题已在此处解决,首先使用下一个事件估计器解决,其次使用角伴随函数的Legendre展开技术解决。在第一种方法中,通过管道确定性地跟踪伴随粒子到远离几何模型的(伴随)点检测器。伴随的粒子将垂直穿过该管的圆盘形入口(实际几何形状中的光束出口)。每当涉及许多对点检测器无用的事件时,该方法就很慢。散射介质中的中子。在第二种方法中,使用遍历一个伴有形状的检测器平面的伴生粒子来估计用于角伴生函数扩展的勒让德系数。这提供了垂直于检测器平面方向的伴随函数的估计。如本文所述,在一个现实的头部模型中,该模型被1020个单向中子/伽马射线束包围,并从中选择最佳射线,该示例计算了10个肿瘤和10个器官的中子和伽马通量。风险。对于小直径的光束(5厘米),并且具有相当的相对误差,正向蒙特卡洛被认为比伴随的蒙特卡洛技术快1.5倍。对于较大直径的中子束(10 cm和15 cm),发现Legendre技术的速度分别快6倍和20倍。仅在伽马射线的情况下,对于直径为10 cm和15 cm的光束,同时使用的蒙特卡洛·勒让德雷和点检测器技术的速度分别比前向蒙特卡洛快2倍和3倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号